Арктангенс в excel в градусах - IT Справочник
Llscompany.ru

IT Справочник
134 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Арктангенс в excel в градусах

Арктангенс в excel

Применение функции арктангенса в Microsoft Excel

​Смотрите также​ должна быть симметричной​: с доп столбцом​Арктангенс возращает значение​ нажмите клавишу F2,​ от -пи/2 до​Результат​ диапазоне от -1​ (1)​ ячейку A1 нового​В этой статье описаны​ отобразится значение арктангенса​ которой находится это​

​. Для запуска окна​ или просто привыкли​

Вычисление значения арктангенса

​Вместо аргумента​ в Экселе используется​Арктангенс входит в ряд​ и пересекаться с​Михаил С.​ угла, тангенс которого​

​ а затем —​ пи/2.​=ACOS(-0,5)​​ до 1.​​1​ листа Excel. Чтобы​ синтаксис формулы и​ в радианах того​ число. В этом​ аргументов выделяем его​ с ними работать​«Число»​

Способ 1: ручной ввод функции

​ обратных тригонометрических выражений.​ осями в 0:0?​: Таблицы Брадиса вам​ равен (числу). По​ клавишу ВВОД. При​

    ​ASIN(число)​Арккосинус числа -0,5 в​Если нужно преобразовать результат​В этой статье описаны​

​ отобразить результаты формул,​

​ использование функции​​ числа, которое было​​ случае проще не​ и жмем на​ исключительно через графический​, естественно, подставляем конкретное​ATAN​

​ Он противоположен тангенсу.​

​А там «Пи»​ в помошь. Могу​ умолчанию, Excel даёт​ необходимости измените ширину​Аргументы функции ASIN описаны​

  • ​ радианах, 2*ПИ/3 (2,094395)​ из радиан в​ синтаксис формулы и​​ выделите их и​​TAN​
  • Способ 2: вычисление при помощи Мастера функций

    ​ задано в функции.​ вводить координаты вручную,​ кнопку​ интерфейс, больше подойдет​ числовое значение. Так​, который входит в​ Как и все​ это не в​ выслать скан.​ углы в радианах.​​ столбцов, чтобы видеть​​ ниже.​

      ​2,094395102​ градусы, умножьте его​ использование функции​​ нажмите клавишу F2,​​в Microsoft Excel.​Урок:​

    ​ а установить курсор​​«OK»​​ выполнение расчета с​​ арктангенс четырех будет​​ группу математических функций.​​ подобные величины, он​​ радианах ли? А​​См. пример.​​Алексей замятин​ все данные.​Число​=ACOS(-0,5)*180/ПИ()​​ на 180/ПИ() или​​ACOS​

    ​ а затем —​Возвращает тангенс заданного угла.​Мастер функций в Excel​ в область поля​.​​ помощью​​ вычисляться по следующей​ Единственным его аргументом​ вычисляется в радианах.​ ведь Ёксель считает,​Alex_ST​​: Так надо сначала​​Формула​

    ​ — обязательный аргумент. Синус​Арккосинус -0,5 в градусах​ используйте функцию ГРАДУСЫ.​в Microsoft Excel.​ клавишу ВВОД. При​TAN(число)​Как видим, нахождение из​ и просто выделить​После выполнения указанных действий​Мастера функций​ формуле:​ является число или​ В Экселе есть​ что ПИ=3,14​: Просто формула в​ ГРАДУСЫ перевести в​Описание​ искомого угла; значение​120​Скопируйте образец данных из​​Возвращает арккосинус числа. Арккосинус​​ необходимости измените ширину​

  • ​Аргументы функции TAN описаны​ числа арктангенса в​ на листе тот​ откроется окно аргументов​.​=ATAN(4)​ ссылка на ячейку,​
  • ​ специальная функция, которая​​Alex_ST​

    ​ В2 должна быть​ радианы. Это отделная​Результат​ должно находиться в​=ГРАДУСЫ(ACOS(-0,5))​ следующей таблицы и​​ числа — это угол,​​ столбцов, чтобы видеть​ ниже.​ Экселе не является​ элемент, в котором​ оператора. В нем​Выделяем ячейку для вывода​​Если числовое значение находится​​ в которой содержится​

    ​ позволяет производить расчет​

    TAN (функция TAN)

    ​: Всё правильно было.​=ПИ()-(ASIN(1/КОРЕНЬ(1+A2^2))), а не​ функция.​​=ASIN(-0,5)​​ диапазоне от -1​

    Описание

    ​Арккосинус -0,5 в градусах​

    Синтаксис

    ​ косинус которого равен​ все данные.​

    ​Число​​ проблемой. Это можно​ расположено нужное значение.​ имеется только одно​

    Замечания

    ​ результата обработки данных.​ в какой-то определенной​ числовое выражение. Синтаксис​ арктангенса по заданному​ Прочел в вашем​ как у вас:​

    Пример

    ​Пайрав​Арксинус числа -0,5 в​ до 1.​120​ ячейку A1 нового​числу​Формула​ Обязательный. Угол в радианах,​ сделать с помощью​ После этих действий​ поле –​ Жмем на кнопку​ ячейке, то аргументом​

    Тригонометрия в Excel: основные функции

    Формулы тригонометрии – редкая и сложная задача для работы в Майкрософт Эксель. Тем не менее, здесь есть ряд встроенных функций, помогающих в геометрических расчетах. В этом посте мы рассмотрим основные из них, которые, в компании с учебниками и справочниками, могут решить многие математические задачи. Они участвуют в расчете площади, объема, угла наклона и т.д. Если Вы школьник, студент, или работаете, например, в сфере строительства, эта статья будет Вам очень полезна.

    Читать еще:  Как сделать проверку данных в excel

    Для корректного расчета геометрических величин, Вам понадобятся познания в элементарных расчетах и некоторые из функций Excel. Так, функция КОРЕНЬ извлечет квадратный корень из заданного числа. Например, запишем: =КОРЕНЬ(121) , и получим результат «11». Хотя правильным решением будет «11» и «-11», программа возвращает только положительный результат в таких случаях.

    Еще одна функция – ПИ() , не нуждается в аргументах и является зарезервированной константой. Ее результатом будет известное число 3,1415, описывающее соотношение длины окружности к ее диаметру. Эту функцию-константу можно активно применять в расчетах.

    Радианы в градусы и градусы в радианы

    Тригонометрические функции Excel, до которых мы еще доберемся, используют запись угла в радианах. Эта общепринятая практика часто бывает ненаглядной, ведь нам привычнее выражать угол в градусах. Чтобы устранить эту проблему, есть две функции преобразования величин:

    • ГРУДУСЫ(Угол в радианах) – преобразует радиальные величины в градусы
    • РАДИАНЫ(Угол вградусах) – наоборот, преобразует градусы в радианы.

    Пользуясь этими функциями, Вы обеспечиваете совместимость и наглядность вычислений.

    Прямые тригонометрические функции

    Конечно, Вы знаете эти функции:

    • COS(Угол в радианах) – косинус угла, соотношение между прилежащим катетом и гипотенузой прямоугольного треугольника
    • SIN(Угол в радианах) – синус угла, отношение противолежащего катета к гипотенузе

    Для удобства чтения формул, можно использовать вложенную функцию РАДИАНЫ и задать угол в градусах. Например, формула =COS(РАДИАНЫ(180)) вернет результат «-1».

    Производные тригонометрические функции

    Еще две функции Вам так же знакомы – это тангенс и котангенс:

    • TAN(Угол в радианах) – отношение длины противолежащего катета к прилежащему
    • COT(Угол в радианах) – обратная величина – соотношение прилежащего угла к противолежащему.

    Здесь так же рекомендую использовать функции преобразования величин РАДИАНЫ и ГРАДУСЫ.

    Другие тригонометрические функции

    Среди прочих тригонометрических функций можно выделить секанс и косеканс:

    • SEC(Угол в радианах) – отношение гипотенузы к прилежащему катету
    • CSC(Угол в радианах) – отношение гипотенузы к противолежащему катету

    Легко заметить, что секанс – обратно-пропорциональная величина к косинусу, косеканс – к синусу.

    Обратные тригонометрические функции

    Такие функции выполняют обратный расчет по отношению к перечисленным выше:

    • Арккосинус – это угол, который образуют прилежащий катет и гипотенуза с определенным косинусом. Чтобы посчитать эту величину, используйте функцию ACOS(Значение косинуса) .
    • Арксинус – угол между противолежащим катетом и гипотенузой с определенным синусом, вычисляется так: ASIN(Значение синуса) .
    • Арктангенс – угол между противолежащим и прилежащим катетами для заданного тангенса: ATAN(Значение тангенса) .
    • Арккотангенс – угол, для которого справедливо заданное значение котангенса: ACOT(Значение котангенса).

    Все перечисленные функции вернут угол в радианах. Естественно, для перевода его в градусы, используем функцию ГРАДУСЫ .

    Знание и умелое применение перечисленных функций, конечно, не сделает Вас богом в тригонометрии, но все же позволит выполнить сложные расчеты, «стоимость» которых часто довольно высока. Научитесь комбинировать их с другими функциями, построением графиков, чтобы получить максимальный эффект от полученных знаний.

    Это все о тригонометрических функциях, спасибо, что читаете мой блог и развиваетесь в своих знаниях. Следующую статью я напишу об округлении чисел и очень Вам рекомендую ее не пропустить!

    Применение функции арктангенса в Microsoft Excel

    Арктангенс входит в ряд обратных тригонометрических выражений. Он противоположен тангенсу. Как и все подобные величины, он вычисляется в радианах. В Экселе есть специальная функция, которая позволяет производить расчет арктангенса по заданному числу. Давайте разберемся, как пользоваться данным оператором.

    Вычисление значения арктангенса

    Арктангенс является тригонометрическим выражением. Он исчисляется в виде угла в радианах, тангенс которого равен числу аргумента арктангенса.

    Для вычисления данного значения в Экселе используется оператор ATAN, который входит в группу математических функций. Единственным его аргументом является число или ссылка на ячейку, в которой содержится числовое выражение. Синтаксис принимает следующую форму:

    Читать еще:  Найти число в тексте excel

    Способ 1: ручной ввод функции

    Для опытного пользователя, ввиду простоты синтаксиса данной функции, легче и быстрее всего произвести её ручной ввод.

      Выделяем ячейку, в которой должен находиться результат расчета, и записываем формулу типа:

    Вместо аргумента «Число», естественно, подставляем конкретное числовое значение. Так арктангенс четырех будет вычисляться по следующей формуле:

    Если числовое значение находится в какой-то определенной ячейке, то аргументом функции может служить её адрес.

  • Для вывода результатов расчета на экран нажимаем на кнопку Enter.
  • Способ 2: вычисление при помощи Мастера функций

    Но для тех пользователей, которые ещё не полностью овладели приемами ручного ввода формул или просто привыкли с ними работать исключительно через графический интерфейс, больше подойдет выполнение расчета с помощью Мастера функций.

      Выделяем ячейку для вывода результата обработки данных. Жмем на кнопку «Вставить функцию», размещенную слева от строки формул.

    Происходит открытие Мастера функций. В категории «Математические» или «Полный алфавитный перечень» следует найти наименование «ATAN». Для запуска окна аргументов выделяем его и жмем на кнопку «OK».

    После выполнения указанных действий откроется окно аргументов оператора. В нем имеется только одно поле – «Число». В него нужно ввести то число, арктангенс которого следует рассчитать. После этого жмем на кнопку «OK».

    Также в качестве аргумента можно использовать ссылку на ячейку, в которой находится это число. В этом случае проще не вводить координаты вручную, а установить курсор в область поля и просто выделить на листе тот элемент, в котором расположено нужное значение. После этих действий адрес этой ячейки отобразится в окне аргументов. Затем, как и в предыдущем варианте, жмем на кнопку «OK».

  • После выполнения действий по вышеуказанному алгоритму в предварительно обозначенной ячейке отобразится значение арктангенса в радианах того числа, которое было задано в функции.
  • Как видим, нахождение из числа арктангенса в Экселе не является проблемой. Это можно сделать с помощью специального оператора ATAN с довольно простым синтаксисом. Использовать данную формулу можно как путем ручного ввода, так и через интерфейс Мастера функций.

    Отблагодарите автора, поделитесь статьей в социальных сетях.

    Перевод градусов в радианы в Excel

    Разберем как перевести градусы в радианы (и наоборот) с помощью стандартных функций Excel, а также узнаем как это можно сделать без применения функций.

    В повседневной жизни мы привыкли оперировать градусами, как основной единицей измерения углов.
    Однако не всегда градусы удобно использовать в расчетах, к примеру, в математическом анализе при работе с тригонометрическими функциями аргумент по умолчанию считается выраженным в радианах.

    Вдобавок в тригонометрических функциях в Excel, таких как SIN (синус), COS (косинус), TAN (тангенс), в качестве аргумента указывается угол в радианной мере, поэтому для корректной работы с данными формулами необходимо предварительно перевести его в радианы.
    И наоборот, в обратных тригонометрических функциях в Excel, таких как ASIN (арксинус), ACOS (арккосинус), ATAN (арктангенс), уже возвращаемое значение выражается в радианной мере, поэтому при необходимости результат нужно будет переводить уже в градусы.

    Перед тем как перевести угол из градусной меры в радианную вспомним, что радиан — это угол, соответствующий дуге, длина которой равна ее радиусу. Из определения следует, что один полный оборот в 360° составляет 2π радиан, откуда можно получить формулу перевода угла из одной системы измерения в другую:


    В Excel есть две стандартные функции, которые позволяют перевести градусы в радианы и наоборот.
    Давайте подробно остановимся на особенностях применения каждой из них.

    Функция РАДИАНЫ в Excel

    Синтаксис и описание:

    РАДИАНЫ(угол)
    Преобразует градусы в радианы.

    • Угол(обязательный аргумент) — угол в градусной мере, преобразуемый в радианы.
    Читать еще:  Excel vba список файлов в папке

    В качестве аргумента задаем угол в градусной мере, в результате преобразования получаем радианную:

    Функция ГРАДУСЫ в Excel

    Синтаксис и описание:

    ГРАДУСЫ(угол)
    Преобразует радианы в градусы.

    • Угол(обязательный аргумент) — угол в радианной мере, преобразуемый в градусы.

    Функция по сути аналогична описанной выше, но в данном случае на входе мы задаем радианы, а на выходе получаем градусы:

    Альтернативный способ перевода

    Перевести угол из градусной меры в радианную можно и без использования стандартных формул перевода углов в Excel.
    Действительно, мы уже выяснили, что в развернутом угле (180°) содержится π радиан, поэтому умножая угол выраженный в градусах на коэффициент π/180 (с помощью константы Пи) получим радианную меру угла:


    Аналогично умножая на обратный коэффициент 180/π можно сделать перевод из радианной меры в градусную:

    ilyachalov

    Илья Чалов

    В предыдущем посте о связи прямоугольных и полярных координат в частности выведены формулы для перевода прямоугольных координат в полярные:

    r = sqrt(x * x + y * y);
    фи = atan(y / x);

    Формула для вычисления угла фи выведена из геометрического определения тангенса угла

    Изобразим график функции z = tan(фи) , где z = y / x :


    Вспомним, что график обратной функции (в нашем случае арктангенса по отношению к тангенсу) можно получить, повернув исходный график влево на 90 градусов и отразив полученное зеркально слева направо. Итак, график функции фи = atan(z) :


    Получилось, что в случае функции фи = atan(z) для одной и той же области определения (значения на оси z) существует множество областей значений (значения на оси фи).

    Например, для графика, проходящего через начало координат (z = 0, фи = 0) область значений находится в пределах от –PI/2 до PI/2 . Этот график обычно и обозначают формулой фи = atan(z) , уточняя рядом с формулой область значений. Графики, лежащие выше и ниже этого графика, обозначают, прибавляя или отнимая от исходной формулы число Пи. Например, для нескольких графиков, лежащих ближе к началу координат:

    Определенная в стандарте языка C++ функция для вычисления арктангенса atan является отображением графика фи = atan(z) , проходящего через начало координат, то есть она возвращает значения в пределах от –PI/2 до PI/2 .

    Теперь вернемся к рисунку с полярными координатами в начале этого поста. И увидим, что, воспользовавшись стандартной функцией atan в языке C++ при попытке перевода прямоугольных координат в полярные, мы сможем получить угол фи только для 1-го и 4-го квадрантов системы координат (про квадранты я писал в посте о системах координат) из-за вышеописанного ограничения возвращаемых функцией atan значений пределами от –PI/2 до PI/2 .

    Что же делать? Воспользуемся кусочками других графиков арктангенса, о которых писалось выше. Вот как нужные кусочки графиков будут выглядеть на рисунке:


    То есть для реализации этого в программе на C++ через стандартную функцию atan нужно будет описать нахождение угла фи с помощью следующих равенств:

    (1 и 4 квадранты) если (x > 0), то фи = atan(y / x); красный график
    (2 квадрант) если (x 0), то фи = atan(y / x) + PI; зеленый
    (3 квадрант) если (x синий

    Однако, вместо этого в программе на C++ можно использовать стандартную функцию нахождения арктангенса atan2, которая заменяет все вышеперечисленные равенства и выдает угол фи в нужных пределах от –PI до PI . То есть для перевода прямоугольных координат в полярные нужно использовать следующие формулы:

    r = sqrt(x * x + y * y);
    фи = atan2(y / x);

    Если стандартная функция atan принимает один аргумент, то стандартная функция atan2 принимает два аргумента — прямоугольные координаты y и x (именно в таком порядке) и в зависимости от знаков каждого из аргументов выдает нужный график с нужным результатом:

    Подводящие к этому посты:
    1. Мера измерения углов, радианы и градусы (тут).
    2. Число Пи в программе на C++ (тут).
    3. Прямоугольная и полярная системы координат (тут).
    4. Связь прямоугольных и полярных координат (тут).

    Ссылка на основную публикацию
    ВсеИнструменты 220 Вольт
    Adblock
    detector