Принцип магнитной записи жесткого диска - IT Справочник
Llscompany.ru

IT Справочник
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Принцип магнитной записи жесткого диска

Принципы магнитной записи и физическое устройство жесткого диска

Накопитель на жёстких магнитных дисках или НЖМД (англ. hard (magnetic) disk drive, HDD, HMDD), жёсткий диск — запоминающее устройство (устройство хранения информации) произвольного доступа, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

Жёсткий диск состоит из гермозоны и блока электроники.

Гермозона включает в себя корпус из прочного сплава, собственно диски (пластины) с магнитным покрытием, в некоторых моделях разделённые сепараторами, а также блок головок с устройством позиционирования, и электропривод шпинделя.

Блок головок — пакет кронштейнов (рычагов) из упругой стали (обычно по паре на каждый диск). Одним концом они закреплены на оси рядом с краем диска. На других концах (над дисками) закреплены головки.

Диски (пластины), как правило, изготовлены из металлического сплава.

Диски жёстко закреплены на шпинделе. Во время работы шпиндель вращается со скоростью несколько тысяч оборотов в минуту (3600, 4200, 5000, 5400, 5900, 7200, 9600, 10 000, 12 000, 15 000). При такой скорости вблизи поверхности пластины создаётся мощный воздушный поток, который приподнимает головки и заставляет их парить над поверхностью пластины. Форма головок рассчитывается так, чтобы при работе обеспечить оптимальное расстояние от пластины. Пока диски не разогнались до скорости, необходимой для «взлёта» головок, парковочное устройство удерживает головки в зоне парковки. Это предотвращает повреждение головок и рабочей поверхности пластин. Шпиндельный двигатель жёсткого диска трёхфазный синхронный, что обеспечивает стабильность вращения магнитных дисков, смонтированных на оси (шпинделе) двигателя. Статор двигателя содержит три обмотки, включенные «звездой» с отводом посередине, а ротор — постоянный секционный магнит.

Сепаратор (разделитель) — пластина, изготовленная из пластика или алюминия, находящаяся между пластинами магнитных дисков и над верхней пластиной магнитного диска. Используется для выравнивания потоков воздуха внутри гермозоны.

Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке из-за эффекта электромагнитной индукции.

В последнее время для считывания применяют магниторезистивный эффект и используют в дисках магниторезистивные головки. В них изменение магнитного поля приводит к изменению сопротивления, в зависимости от изменения напряжённости магнитного поля. Подобные головки позволяют увеличить вероятность достоверности считывания информации (особенно при больших плотностях записи информации).

Системная организация HDD. Интерфейсы устройств хранения

Интерфейс (англ. interface) — техническое средство взаимодействия 2-х разнородных устройств, что в случае с жёсткими дисками является совокупностью линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии (контроллеры интерфейсов), и правил (протокола) обмена. Современные серийно выпускаемые внутренние жёсткие диски могут использовать интерфейсы ATA (он же IDE и PATA), SATA, eSATA, SCSI, SAS, FireWire, SDIO и Fibre Channel.

RAID-массивы

RAID (англ. redundant array of independent disks — избыточный массив независимых жёстких дисков) — массив из нескольких дисков, управляемых контроллером, взаимосвязанных скоростными каналами и воспринимаемых внешней системой как единое целое. В зависимости от типа используемого массива может обеспечивать различные степени отказоустойчивости и быстродействия. Служит для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации (RAID 0).

RAID 0 (striping — «чередование») — дисковый массив из двух или более жёстких дисков с отсутствием резервирования. Информация разбивается на блоки данных () и записывается на оба/несколько дисков одновременно.

(+): За счёт этого существенно повышается производительность (от количества дисков зависит кратность увеличения производительности).

(-): Надёжность RAID 0 заведомо ниже надёжности любого из дисков в отдельности и падает с увеличением количества входящих в RAID 0 дисков, т. к. отказ любого из дисков приводит к неработоспособности всего массива.

RAID 1 (mirroring — «зеркалирование»).

(+): Обеспечивает приемлемую скорость записи и выигрыш по скорости чтения при распараллеливании запросов.

(+): Имеет высокую надёжность — работает до тех пор, пока функционирует хотя бы один диск в массиве. Вероятность выхода из строя сразу двух дисков равна произведению вероятностей отказа каждого диска. На практике при выходе из строя одного из дисков следует срочно принимать меры — вновь восстанавливать избыточность. Для этого с любым уровнем RAID (кроме нулевого) рекомендуют использовать диски горячего резерва. Достоинство такого подхода — поддержание постоянной доступности.

(-): Недостаток заключается в том, что приходится выплачивать стоимость двух жёстких дисков, получая полезный объём одного жёсткого диска (классический случай, когда массив состоит из двух дисков).

24) Логическая структура дисков. Файловая система

Винчестеры, как и другие магнитные накопители с прямым доступом, имеют дорожковую организацию дисковой памяти. Это означает, что поверхность магнитных дисков разбивается на концентрические кольца разного диаметра – дорожки, начиная с внешнего края. Далее структуру информации на винчестере следует рассматривать отдельно с точки зрения физической и логической структур.

Логическая структура жестких дисков несколько отличается от логической структуры гибких дисков. Минимальным адресуемым элементом жесткого диска является кластер(минимальная логическая единица доступа к информации), который может включать в себя несколько секторов. Размер кластера зависит от типа используемой таблицы FAT и от емкости жесткого диска.

Файлу всегда выделяется целое число кластеров.При размещении на жестком диске большого количества небольших по размеру файлов они будут занимать кластеры лишь частично, что приведет к большим потерям свободного дискового пространства.Эта проблема частично решается с помощью использования таблицы FAT32, в которой объем кластера принят равным 8 секторам или 4 килобайтам для диска любого объема.

Файловая система через использование кластеров позволяет осуществлять доступ к данным. Большинство файловых систем построено на основе таблицы размещения файлов (file allocation table — FAT). Наиболее распространены файловые системы FAT12 (диски менее 16 Мбайт), FAT16 (или просто FAT) и FAT32.

FAT подразумевает наличие следующих структур (в порядке расположения их на диске):

• Загрузочные секторы главного и дополнительного разделов

• Загрузочный сектор логического диска

• Таблицы размещения файлов (FAT)

• Цилиндр диагностических операций

SSD-накопитель

Твердотельный накопитель (англ. SSD, solid-state drive) — компьютерное запоминающее устройство на основе микросхем памяти. Кроме них, SSD содержит управляющий контроллер. Не содержит движущихся механических частей,

Различают два вида твердотельных накопителей: SSD на основе памяти, подобной оперативной памяти компьютеров, и SSD на основе флеш-памяти.

Главный недостаток SSD — ограниченное количество циклов перезаписи. Обычная [обтекаемые выражения](MLC, Multi-level cell, многоуровневые ячейки памяти) флеш-память позволяет записывать данные примерно 10 000 раз. Более дорогостоящие виды памяти (SLC, Single-level cell, одноуровневые ячейки памяти) — более 100 000 раз[9]. Для борьбы с неравномерным износом применяются схемы балансирования нагрузки. Контроллер хранит информацию о том, сколько раз какие блоки перезаписывались и при необходимости «меняет их местами»

Отсутствие движущихся частей;

Высокая скорость чтения/записи, нередко превосходящая пропускную способность интерфейса жесткого диска (SAS/SATA II 3 Gb/s, SAS/SATA III 6 Gb/s, SCSI, Fibre Channel и т. д.);

Полное отсутствие шума из-за отсутствия движущихся частей и охлаждающих вентиляторов;

Высокая механическая стойкость;

Широкий диапазон рабочих температур;

Стабильность времени считывания файлов вне зависимости от их расположения или фрагментации;

Малые габариты и вес;

Большой модернизационный потенциал, как у самих накопителей, так и у технологий их производства.

Намного меньшая чувствительность к внешним электромагнитным полям.

Видеосистема

видеокарта — устройство, преобразующее графический образ, хранящийся, как содержимое памяти компьютера или самого адаптера, в форму, пригодную для дальнейшего вывода на экран монитора. Первые мониторы, построенные на электронно-лучевых трубках, работали по телевизионному принципу сканирования экрана электронным лучом, и для отображения требовался видеосигнал, генерируемый видеокартой. В настоящее время эта функция утратила основное значение, и в первую очередь под графическим адаптером понимают устройство с графическим процессором — графический ускоритель, который и занимается формированием самого графического образа. Современная видеокарта состоит из следующих частей: графический процессор, видеоконтроллер, видеопамять, цифро-аналоговый преобразователь, видео-ПЗУ, система охлаждения.

Читать еще:  Как разобрать внешний жесткий диск toshiba

Жесткий диск. Принципы магнитной записи на жесткий диск

Накопители на жестких дисках объединяют в одном корпусе носитель (носители), устройство чтения/записи и интерфейсную часть, называемую контроллером жесткого диска. Типичной конструкцией жесткого диска является исполнение в виде одного устройства — камеры, внутри которой находится один или более дисковых носителей насажанных на один шпиндель и блок головок чтения/записи с их общим приводящим механизмом(рисунок 1). Рядом с камерой носителей и головок располагаются схемы управления головками, дисками и интерфейсная часть. На интерфейсной карте устройства располагается интерфейс дискового устройства, а контроллер с его интерфейсом располагается на самом устройстве. С интерфейсным адаптером схемы накопителя соединяются при помощи комплекта шлейфов.

Рисунок 1. Устройство жесткого диска

Информация заносится на концентрические дорожки, равномерно распределенные по всему носителю. В случае большего, чем один диск, числа носителей все дорожки, находящиеся одна под другой, называются цилиндром. Операции чтения/записи производятся подряд над всеми дорожками цилиндра, после чего головки перемещаются на новую позицию.

Герметичная камера предохраняет носители не только от проникновения механических частиц пыли, но и от воздействия электромагнитных полей. Камера не является абсолютно герметичной т.к. соединяется с окружающей атмосферой при помощи специального фильтра, уравнивающего давление внутри и снаружи камеры. Воздух внутри камеры максимально очищен от пыли, т.к. малейшие частички могут привести к порче магнитного покрытия дисков и потере данных и работоспособности устройства.

Диски вращаются постоянно со скоростью вращения носителей от 4500 до 10000 об/мин, что обеспечивает высокую скорость чтения/записи. По величине диаметра носителя чаще других производятся 5.25,3.14,2.3 дюймовые диски.

В настоящее время наиболее часто применяются шаговые и линейные двигатели механизмов позиционирования и механизмы перемещения головок в целом.

В системах с шаговым механизмом и двигателем головки перемещаются на определенную величину, соответствующую расстоянию между дорожками. Дискретность шагов зависит либо от характеристик шагового двигателя, либо задается серво-метками на диске, которые могут иметь магнитную или оптическую природу.

В системах с линейным приводом головки перемещаются электромагнитом, а для определения необходимого положения служат специальные сервисные сигналы, записанные на носитель при его производстве и считываемые при позиционировании головок. Во многих устройствах для серво-сигналов используется целая поверхность и специальная головка или оптический датчик.

Линейные приводы перемещают головки значительно быстрее, чем шаговые, кроме того они позволяют производить небольшие радиальные перемещения «внутри» дорожки, давая возможность отследить центр окружности серво-дорожки. Этим достигается положение головки, наилучшее для считывания с каждой дорожки, что значительно повышает достоверность считываемых данных и исключает необходимость временных затрат на процедуры коррекции. Как правило, все устройства с линейным приводом имеют автоматический механизм парковки головок чтения/записи при отключении питания устройства.

Принципы магнитной записи на жесткий диск

Принцип магнитной записи электрических сигналов на движущийся магнитный носитель основан на явлении остаточного намагничивания магнитных материалов. Запись и хранение информации на магнитном носителе производится путем преобразования электрических сигналов в соответствующие им изменения магнитного поля, воздействия его на магнитный носитель и сохранения следов этих воздействий в магнитном материале длительное время, благодаря явлению остаточного магнетизма. Воспроизведение электрических сигналов производится путем обратного преобразования. Система магнитной записи состоит из носителя записи и взаимодействующих с ним магнитных головок (рисунок 2).

Рисунок 2. Принцип записи и считывания информации с магнитного носителя

При цифровой магнитной записи в магнитную головку поступает ток, при котором поле записи через определенные промежутки времени изменяет свое направление на противоположное. В результате под действием поля рассеяния магнитной головки происходят намагничивание или перемагничивание отдельных участков движущегося магнитного носителя.

При периодическом изменении направления поля записи в рабочем слое носителя возникает цепочка участков с противоположным направлением намагниченности, которые соприкасаются друг с другом одноименными полюсами. Рассмотренный вид записи, когда участки рабочего слоя носителя перемагничиваются вдоль его движения, называется продольной записью (рисунок 3).

Чередующиеся участки с различным направлением намагниченности, возникшие в магнитном покрытии, являются магнитными доменами (битовыми ячейками). Чем меньше размер ячейки, тем выше плотность записи информации. Однако с уменьшением размера ячейки возрастает взаимное влияние их размагничивающих полей, направленных в сторону, противоположную намагниченности в ячейках, что при уменьшении битовой ячейки ниже критического значения приводит к самопроизвольному размагничиванию.

Рисунок 3. Последовательность участков с противоположным направлением намагниченности

Для магнитной записи используются носители в виде магнитных пластин (дисков). Пластины изготавливаются процессом напыления множественных металлических пленок и защитного слоя покрытия на очень плоскую, бездефектную стеклянную или алюминиевую подложку. Информация размещается в виде концентрических окружностей, называемых дорожками (рисунок 4). В современных НЖМД плотность дорожек достигает значений 4,3*104 дорожек на один сантиметр радиуса пластины.

Рисунок 4. Размещение дорожек на поверхности диска

HDD будущего: перпендикулярная запись и не только

Что делать? Информационный бум продолжается, терабайт данных уже ни у кого не вызывает трепета. А привычная технология создания жестких дисков достигла физических пределов увеличения плотности записи. Неужели 500 Гбайт – это максимум, что можно поместить на стандартный 3,5-дюймовый жесткий диск ближайшего будущего?

К счастью, нет. Наука не стоит на месте, разрабатываются и находят коммерческое применение совершенно фантастические проекты. С некоторыми из них мы вас сегодня познакомим. Но основной упор будет сделан на фактически готовую к выходу на рынок технологию – перпендикулярную запись. Пора узнать, какими станут жесткие диски в ближайшие 5-10 лет.

Экскурс в прошлое

История накопителей на базе жестких дисков началась в 1952 году, когда корпорация IBM предложила одному из своих ведущих инженеров, Рейнольду Джонсону, возглавить новую исследовательскую лабораторию. В те годы приоритетной задачей был поиск альтернативы чрезвычайно медленным перфокартам и магнитным лентам, требовались высокоемкие накопители информации с произвольным доступом.

Результатом пятилетнего труда команды Рейнольда стало создание в 1955 году накопителя на жестких дисках IBM 350 Disk File, в 1956 году вошедшего в состав IBM RAMAC. Накопитель состоял из 50 дисков диаметром 24 дюйма, вращавшихся со скоростью 1200 об/мин. Среднее время доступа к произвольной ячейке составляло 1 с, плотность – 2 кбит на квадратный дюйм, емкость – 5 Мбайт. Размер накопителя был сравним с двумя современными двухкамерными холодильниками.

Первый HDD емкостью 5 Мбайт

С тех пор плотность записи на пластины возросла более чем в 60 миллионов раз (!), достигнув отметки в 120 Гбит/дюйм 2 .

На протяжении 50 лет технология записи не менялась, а только уменьшались размеры жестких дисков, повышалась скорость вращения шпинделя и емкость пластин. Царствовала параллельная запись.

Технология параллельной записи на магнитные диски

Схема технологии параллельной записи

Данные записываются на диск, покрытый магнитным записывающим слоем. Любой магнитный материал (например, оксид железа) состоит из доменов — областей, внутри которых магнитные моменты всех атомов направлены в одну сторону. Каждый домен имеет большой суммарный момент, который в исходном состоянии может быть направлен произвольно. Под действием внешнего магнитного поля домены могут менять направление магнитного момента.

Именно этот эффект используется при записи. Информация хранится не на одном домене, а на областях (частицах), состоящих минимум из 70-100 «зерен». Если магнитный момент такой частицы совпадает с направлением движения считывающей головки – получаем «0», если противоположен – «1». Так как две соседние области имеют противоположное направление моментов, на границе между ними часть доменов может потерять стабильность и произвольно менять направление магнитного момента. Но об этом позже.

Конструкция считывающей головки

Главной характеристикой магнитной пластины является плотность записи. Она состоит из нескольких показателей: линейная плотность — плотность на один дюйм дорожки (Bits per Inch, BPI), количество дорожек на дюйм диаметра (Tracks per Inch, TPI), и плотность на квадратный дюйм поверхности (areal density, произведение первых двух).

Чтобы увеличить емкость накопителя, можно пойти двумя путями: увеличить количество пластин или увеличить плотность записи на пластину. Первый путь означает значительное усложнение механического устройства накопителя, что зачастую просто невозможно, да и экономически не выгодно. Поэтому основным показателем, определявшим рост емкости жестких дисков за последние 50 лет, являлась плотность записи на пластину.

Уроки масштабирования

Основы масштабирования в магнитной записи точно такие же, как и в теории трехмерного магнитного поля. Если магнитные свойства материалов постоянны, то конфигурация поля остается неизменной при изменении всех токов и размеров во всех плоскостях в s раз. При этом плотность записи также увеличивается в s раз. Однако следует учитывать еще два важных для практического использования фактора: скорость вращения дисков и скорость передачи данных. На практике скорость вращения остается неизменной, скорость передачи данных растет, а токи постепенно уменьшаются, поэтому приходится изобретать новые методы чтения.

Читать еще:  Характеристики накопителей на жестких магнитных дисках

В теории, если необходимо увеличить TPI в 2 раза, BPI в 2 раза и areal density в 4 раза, достаточно уменьшить все размеры в 2 раза, сохранить скорость вращения той же и удвоить скорость передачи данных. Если материалы и пропорции сохраняются, то устоявшийся принцип соблюдается.

На практике такой способ масштабирования сталкивается с 3 сложностями:

  • Сохранение или увеличение скорости считывания при увеличении плотности записи может быть невозможно для существующей электроники;
  • Для увеличения производительности приводов приходится увеличивать скорость вращения дисков, что также сказывается на скорости считывания;
  • Уменьшение масштабов уменьшает уровень сигналов чтения, что резко увеличивает шумы в магнитных полях. Уменьшение соотношения сигнал/шум требует создания более чувствительных считывающих головок. Поэтому индустрия перешла от индуктивных головок к магниторезистивным (MR), затем к GMR-головкам, использующим эффект «гигантской магниторезистивности», и даже к TMR-головкам, построенным на туннельном эффекте.

Тем не менее, до последнего времени производители накопителей шли именно таким путем, пока не подошли вплотную к так называемому суперпарамагнитному пределу , который сделал невозможным дальнейшее наращивание плотности традиционными методами.

Суперпарамагнетизм

Как известно из курса физики, свойством любого магнетика является анизотропия. Домен с большим трудом намагничивается в одном направлении, и легко – в противоположном (по «легкой оси»). Его энергия пропорциональна sin 2 θ , где θ — угол между углом намагниченности домена и осью предпочтительного намагничивания. В условиях абсолютного нуля в изолированной системе намагниченный домен занимает положение в одном из состояний с наименьшей энергией (т.е. под углом 0 или 180 градусов). Для представления информации эти положения принимаются за логический ноль или единицу. При изменении направления намагниченности и повышении температуры домен может поменять направленность магнитного момента. Уменьшение размеров частицы в 2 раза означает уменьшение энергетического барьера, который необходимо преодолеть для смены направления, поэтому она становится значительно менее стабильной. Период стабильности может измениться со 100 лет (стабильная частица) до 100 нс (при таком периоде частицу вообще сложно назвать постоянным магнитом). В последнем случае мы получим на пластине огромное количество хаотически расположенных намагниченных частиц, произвольно меняющих свою направленность. Это явление называется суперпарамагнетизмом, потому что макроскопические свойства такой среды похожи на свойства парамагнетиков.

В реальной среде ситуация оказывается еще более сложной. При традиционном методе параллельной записи на диск магнитные частицы располагаются магнитными моментами параллельно плоскости диска. А, как известно, два постоянных магнита, расположенных одинаковыми полюсами друг к другу, отталкиваются, а разными – притягиваются. Значит, между ними тоже происходит энергетическое взаимодействие. У границ намагниченных частиц возникает поле рассеяния, которое забирает энергию у магнитных полей обеих частиц. В результате крайние домены частицы теряют часть заряда и становятся менее стабильными.

Чтобы это преодолеть, ученые предлагают несколько методов, но все они лишь слегка отодвигают парамагнитный предел. Необходимо принципиально новое решение.

Как устроен жесткий диск компьютера (HDD)

Приветствую всех читателей блога pc-information-guide.ru. Многих интересует вопрос — как устроен жесткий диск компьютера. Поэтому я решил посвятить этому сегодняшнюю статью.

Жесткий диск компьютера (HDD или винчестер) нужен для хранения информации после выключения компьютера, в отличие от ОЗУ (оперативной памяти) — которая хранит информацию до момента прекращения подачи питания (до выключения компьютера).

Жесткий диск, по-праву, можно назвать настоящим произведением искусства, только инженерным. Да-да, именно так. Настолько сложно там внутри все устроено. На данный момент во всем мире жесткий диск — это самое популярное устройство для хранения информации, он стоит в одном ряду с такими устройствами, как: флеш-память (флешки), SSD. Многие наслышаны о сложности устройства жесткого диска и недоумевают, как в нем помещается так много информации, а поэтому хотели бы узнать, как устроен или из чего состоит жесткий диск компьютера. Сегодня будет такая возможность).

Устройство жесткого диска компьютера

Жесткий диск состоит из пяти основных частей. И первая из них — интегральная схема, которая синхронизирует работу диска с компьютером и управляет всеми процессами.

Вторая часть — электромотор (шпиндель), заставляет вращаться диск со скоростью примерно 7200 об/мин, а интегральная схема поддерживает скорость вращения постоянной.

А теперь третья, наверное самая важная часть — коромысло, которое может как записывать, так и считывать информацию. Конец коромысла обычно разделен, для того чтобы можно было работать сразу с несколькими дисками. Однако головка коромысла никогда не соприкасается с дисками. Существует зазор между поверхностью диска и головкой, размер этого зазора примерно в пять тысяч раз меньше толщины человеческого волоса!

Но давайте все же посмотрим, что случится, если зазор исчезнет и головка коромысла соприкоснется с поверхностью вращающегося диска. Мы все еще со школы помним, что F=m*a (второй закон Ньютона, по-моему), из которого следует, что предмет с небольшой массой и огромным ускорением — становится невероятно тяжелым. Учитывая огромную скорость вращения самого диска, вес головки коромысла становится весьма и весьма ощутимым. Естественно, что повреждение диска в таком случае неизбежно. Кстати, вот что случилось с диском, у которого этот зазор по каким то причинам исчез:

Так же важна роль силы трения, т.е. ее практически полного отсутствия, когда коромысло начинает считывать информацию, при этом смещаясь до 60 раз за секунду. Но постойте, где же здесь находится двигатель, что приводит в движение коромысло, да еще с такой скоростью? На самом деле его не видно, потому что это электромагнитная система, работающая на взаимодействии 2 сил природы: электричества и магнетизма. Такое взаимодействия позволяет разгонять коромысло до скоростей света, в прямом смысле.

Четвертая часть — сам жесткий диск, это то, куда записывается и откуда считывается информация, кстати их может быть несколько.

Ну и пятая, завершающая часть конструкции жесткого диска — это конечно же корпус, в который устанавливаются все остальные компоненты. Материалы применяются следующие: почти весь корпус выполнен из пластмассы, но верхняя крышка всегда металлическая. Корпус в собранном виде нередко называют «гермозоной». Бытует мнение, что внутри гермозоны нету воздуха, а точнее, что там — вакуум. Мнение это опирается на тот факт, что при таких высоких скоростях вращения диска, даже пылинка, попавшая внутрь, может натворить много нехорошего. И это почти верно, разве что вакуума там никакого нету — а есть очищенный, осушенный воздух или нейтральный газ — азот например. Хотя, возможно в более ранних версиях жестких дисков, вместо того, чтобы очищать воздух — его просто откачивали.

Это мы говорили про компоненты, т.е. из чего состоит жесткий диск. Теперь давайте поговорим про хранение данных.

Как и в каком виде хранятся данные на жестком диске компьютера

Данные хранятся в узких дорожках на поверхности диска. При производстве, на диск наносится более 200 тысяч таких дорожек. Каждая из дорожек разделена на секторы.

Карты дорожек и секторов позволяют определить, куда записать или где считать информацию. Опять же вся информация о секторах и дорожках находится в памяти интегральной микросхемы, которая, в отличие от других компонентов жесткого диска, размещена не внутри корпуса, а снаружи и обычно снизу.

Сама поверхность диска — гладкая и блестящая, но это только на первый взгляд. При более близком рассмотрении структура поверхности оказывается сложнее. Дело в том, что диск изготавливается из металлического сплава, покрытого ферромагнитным слоем. Этот слой как раз и делает всю работу. Ферромагнитный слой запоминает всю информацию, как? Очень просто. Головка коромысла намагничивает микроскопическую область на пленке (ферромагнитном слое), устанавливая магнитный момент такой ячейки в одно из состояний: о или 1. Каждый такой ноль и единица называются битами. Таким образом, любая информация, записанная на жестком диске, по-факту представляет собой определенную последовательность и определенное количество нулей и единиц. Например, фотография хорошего качества занимает около 29 миллионов таких ячеек, и разбросана по 12 различным секторам. Да, звучит впечатляюще, однако в действительности — такое огромное количество битов занимает очень маленький участок на поверхности диска. Каждый квадратный сантиметр поверхности жесткого диска включает в себя несколько десятков миллиардов битов.

Читать еще:  Устройство для чтения жестких дисков

Принцип работы жесткого диска

Мы только что с вами рассмотрели устройство жесткого диска, каждый его компонент по отдельности. Теперь предлагаю связать все в некую систему, благодаря чему будет понятен сам принцип работы жесткого диска.

Итак, принцип, по которому работает жесткий диск следующий: когда жесткий диск включается в работу — это значит либо на него осуществляется запись, либо с него идет чтение информации, или с него загружается ОС, электромотор (шпиндель) начинает набирать обороты, а поскольку жесткие диски закреплены на самом шпинделе, соответственно они вместе с ним тоже начинают вращаться. И пока обороты диска(ов) не достигли того уровня, чтобы между головкой коромысла и диском образовалась воздушная подушка, коромысло во избежание повреждений находится в специальной «парковочной зоне». Вот как это выглядит.

Как только обороты достигают нужного уровня, сервопривод (электромагнитный двигатель) приводит в движение коромысло, которое уже позиционируется в то место, куда нужно записать или откуда считать информацию. Этому как раз способствует интегральная микросхема, которая управляет всеми движениями коромысла.

Распространено мнение, этакий миф, что в моменты времени, когда диск «простаивает», т.е. с ним временно не осуществляется никаких операций чтения/записи, жесткие диски внутри перестают вращаться. Это действительно миф, ибо на самом деле, жесткие диски внутри корпуса вращаются постоянно, даже тогда, когда винчестер находится в энергосберегающем режиме и на него ничего не записывается.

Ну вот мы и рассмотрели с вами устройство жесткого диска компьютера во всех подробностях. Конечно же, в рамках одной статьи, нельзя рассказать обо всем, что касается жестких дисков. Например в этой статье не было сказано про интерфейсы жесткого диска — это большая тема, я решил написать про это отдельную статью.

Нашел интересное видео, про то, как работает жесткий диск в разных режимах

Всем спасибо за внимание, если вы еще не подписаны на обновления этого сайта — очень рекомендую это сделать, дабы не пропустить интересные и полезные материалы. До встречи на страницах блога!

Магнитные цифровые носители информации

В XIX веке была изобретена магнитная запись. Первоначально она использовалась только для хранения звука.

На ЭВМ первого и второго поколений магнитная лента использовалась как единственный вид сменного носителя для устройств внешней памяти. На одну катушку с магнитной лентой помещалось приблизительно 500 Кб информации.

С начала 1960-х годов появляются магнитные диски: алюминиевые или пластмассовые диски, покрытые тонким магнитным порошковым слоем толщиной в несколько микрон. Информация на диске располагается по круговым концентрическим дорожкам.

Устройство, которое обеспечивает запись/считывание информации, называется накопителем информации или дисководом. Магнитные диски бывают жесткими и гибкими, сменными и встроенными в дисковод компьютера (традиционно называются винчестерами).

Магнитный принцип записи и считывания информации

В накопителях на гибких магнитных дисках (НГМД) и накопителях на жестких магнитных дисках (НЖМД), или винчестерах, в основу записи информации положенонамагничивание ферромагнетиков в магнитном поле, хранение информации основывается на сохранении намагниченности, а считывание информации базируется на явленииэлектромагнитной индукции.

В процессе записи информации на гибкие и жесткие магнитные диски головка дисковода с сердечником из магнитомягкого материала (малая остаточная намагниченность) перемещается вдоль магнитного слоя магнитожесткого носителя (большая остаточная намагниченность). На магнитную головку поступают последовательности электрических импульсов (последовательности логических единиц и нулей), которые создают в головке магнитное поле. В результате последовательно намагничиваются (логическая единица) или не намагничиваются (логический нуль) элементы поверхности носителя. При считывании информации при движении магнитной головки над поверхностью носителя намагниченные участки носителя вызывают в ней импульсы тока (явление электромагнитной индукции). Последовательности таких импульсов передаются по магистрали в оперативную память компьютера.

В отсутствие сильных магнитных полей и высоких температур элементы носителя могут сохранять свою намагниченность в течение долгого времени (лет и десятилетий).

Гибкие магнитные диски

Персональные компьютеры до недавнего времени комплектовались накопителем на гибких магнитных дисках (НГМД), который в прайс-листах называется FDD – Floppy Disk Drive (дисковод для флоппи-дисков). Сами флоппи-диски называют дискетами. Наиболее распространенный тип гибкого диска диаметром 3,5 дюйма (89 мм) вмещает 1,44 Мб информации.

Сам 3.5-дюймовый гибкий диск с нанесенным на него магнитным слоем заключен в жесткий пластмассовый конверт, который предохраняет дискету от механических повреждений и пыли.

Для доступа магнитных головок чтения-записи к дискете в ее пластмассовом корпусе имеется прорезь, которая закрывается металлической задвижкой. Задвижка автоматически отодвигается при установке дискеты в дисковод.

В центре дискеты имеется приспособление для захвата и обеспечения вращения диска внутри пластмассового корпуса. Дискета вставляется в дисковод, который вращает ее с постоянной угловой скоростью. При этом магнитная головка дисковода устанавливается на определенную концентрическую дорожку диска (трек), на которую и производится запись или с которой производится считывание информации.

О бе стороны дискеты покрыты магнитным слоем и на каждой стороне имеется по 80 концентрических дорожек (треков) для записи данных. Каждая дорожка разбита на 18 секторов, и в каждый сектор можно записать блок данных размером 512 байт.

При выполнении операций чтения или записи дискета вращается в дисководе, а головки чтения-записи устанавливаются на нужную дорожку и получают доступ к указанному сектору.

Скорость записи и считывания информации составляет около 50 Кбайт/с. Дискета вращается в дисководе со скоростью 360 оборотов/мин.

В целях сохранения информации гибкие магнитные диски необходимо предохранять от воздействия сильных магнитных полей и нагревания, так как такие физические воздействия могут привести к размагничиванию носителя и потере информации.

Гибкие диски в настоящее время выходят из употребления.

Жесткие магнитные диски

Накопитель на жестком магнитном диске (НЖМД) или, как его чаще называют, винчестер или жесткий диск (Hard Disk), является основным местом хранения данных в персональном компьютере. В прайс-листах винчестеры указываются как НDD — Hard Disk Drive (Дисковод жесткого диска).

Происхождение названия «винчестер» имеет две версии. Согласно первой, фирма IВM разработала накопитель на жестком диске, на каждой из сторон которого умещалось по 30 Мбайт информации, и который имел кодовое название 3030. Легенда гласит, что винтовка типа «Винчестер 3030» завоевала Запад. Такие же намерения были и у разработчиков устройства.

По другой версии, название устройства произошло от названия города Винчестер в Англии, где в лаборатории IBM была разработана технология изготовления плавающей головки для жестких дисков. Изготовленная по этой технологии головка чтения-записи благодаря своим аэродинамическим свойствам как бы плывет в потоке воздуха, который образуется при быстром вращении диска.

Винчестер представляет собой один или несколько жестких (алюминиевых, керамических или стеклянных) дисков, размещенных на одной оси, покрытых магнитным материалом, которые вместе с головками чтения-записи, электроникой и всей механикой, необходимой для вращения дисков и позиционирования головок заключены в неразборный герметичный корпус.

Укрепленные на шпинделе электродвигателя, диски вращаются с высокой скоростью (7 200 оборотов в минуту), а информация читается/записывается магнитными головками, количество которых соответствует числу поверхностей, используемых для хранения информации.

Скорость записи и считывания информации с жестких дисков достаточно велика – может достигать 300 Мбайт/с.

Ёмкость современных жёстких дисков (на ноябрь 2010 г.) достигает 3 000 ГБ (3 Терабайт).

Существуют переносные винчестеры – они устанавливаются не внутри системного блока, а подключаются к компьютеру через параллельный порт или через порт USB.

В жестких дисках используются достаточно хрупкие и миниатюрные элементы (пластины носителей, магнитные головки и пр.), поэтому в целях сохранения информации и работоспособности жесткие диски необходимо оберегать от ударов и резких изменений пространственной ориентации в процессе работы.

Пластиковые карты

В банковской системе большое распространение получили пластиковые карты. На них тоже используется магнитный принцип записи информации, с которой работают банкоматы, кассовые аппараты, связанные с информационной банковской системой.

Ссылка на основную публикацию
ВсеИнструменты 220 Вольт
Adblock
detector